Terristrial ecosystems
Terrestrial ecosystems play a critical role in regulating Earth’s climate by controlling land–atmosphere exchanges of carbon, water, and energy. For example, the terrestrial biosphere sequesters about 25%–30% of human-emitted carbon dioxide—the largest contributor to global warming—while wetlands represent the largest natural source of methane, the second most important greenhouse gas. In addition, global land surface dissipates between about 12–35% and 50–58% of its absorbed solar radiation into sensible heat and latent heat fluxes,which regulate land surface and atmospheric temperatures, and terrestrial and atmospheric moisture, clouds, and precipitation. However, large uncertainties exist in our ecosystems’ carbon-water-energy budget. We aim to advance the understanding and quantification of terristrial ecosystem biophysical and biogeochemical processes, by combining data-driven approches, process-based models, and observations such as remote sensing and eddy covariance.
Selected Papers
- Li, F. et al. The underappreciated importance of small wetlands in global methane emissions. Nature Climate Change (under review).
- Liu, H., Li, F., Dashti, H., & Chen, M. (2025). Hyperspectral surface reflectance improves GPP estimation in terrestrial biosphere modeling using model–data fusion. Remote Sensing of Environment, 330, 114989.
Chen, S., Yuan, K., Li, F., Zhu, Q., & Zhuang, Q. (2025). Hysteretic temperature sensitivity in wetland CH4 emission modeling. Agricultural and Forest Meteorology, 372, 110704.
- Li, M., Li, F., Malhotra, A., Knox, S. H., Stern, R., & Jackson, R. B. (2025). Key environmental and ecological variables of wetland CH4 and CO2 fluxes change with warming. Earth’s Future, 13(6), e2024EF005751.
- Li, Z., Hong, S., Sun, Z., Cong, N., Yan, Y., Li, F., Gao, Y., Sun, Y., Chen, Y., Wang, X., & Piao, S. (2025). Turning point of direct N2O emissions in China’s croplands dominated by reduced fertilizer usage since 2015. Agriculture, Ecosystems & Environment, 388, 109655.
Yuan, K., Li, F., McNicol, G., Chen, M., Hoyt, A., Knox, S., Riley, W. J., Jackson, R., & Zhu, Q. (2024). Boreal–Arctic wetland methane emissions modulated by warming and vegetation activity. Nature Climate Change, 1–7.
Li, F., Hao, D., Zhu, Q., Yuan, K., Braghiere, R. K., He, L., Luo, X., Wei, S., Riley, W. J., Zeng, Y., & Chen, M. (2024). Global impacts of vegetation clumping on regulating land surface heat fluxes. Agricultural and Forest Meteorology, 345, 109820.
- Ji, F., Li, F., Hao, D., Shiklomanov, A. N., Yang, X., Townsend, P. A., Dashti, H., Nakaji, T., Kovach, K. R., Liu, H., Luo, M., & Chen, M. (2024). Unveiling the transferability of PLSR models for leaf trait estimation: lessons from a comprehensive analysis with a novel global dataset. New Phytologist.
Liu, H., Xiao, J., Hao, D., Li, F., Ji, F., & Chen, M. (2024). Importance of viewing angle: hotspot effect improves the ability of satellites to track terrestrial photosynthesis at diurnal and seasonal scales. Remote Sensing of Environment, 317, 114492.
Ji, F., Li, F., Dashti, H., Hao, D., Townsend, P. A., Zheng, T., You, H., & Chen, M. (2024). Leveraging transfer learning and leaf spectroscopy for leaf trait prediction with broad spatial, species, and temporal applicability. Remote Sensing of Environment.
Li, F., Hao, D., Zhu, Q., Yuan, K., Braghiere, R. K., He, L., Luo, X., Wei, S., Riley, W. J., Zeng, Y., & Chen, M. (2023). Vegetation clumping modulates global photosynthesis through adjusting canopy light environment. Global Change Biology, 00, 1–16.
- Zeng, Y., Hao, D., Park, T., Zhu, P., Huete, A., Myneni, R., Knyazikhin, Y., Qi, J., Nemani, R. R., Li, F., Huang, J., Gao, Y., Li, B., Ji, F., Köhler, P., Frankenberg, C., Berry, J. A., & Chen, M. (2023). Structural complexity biases vegetation greenness measures. Nature Ecology & Evolution, 7(11), 1790–1798.